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Abstract
We analyse the dynamics and the geometric properties of the potential energy
surfaces (PES) of the k-trigonometric model (kTM), defined by a fully
connected k-body interaction. This model has no thermodynamic transition
for k = 1, a second-order one for k = 2, and a first-order one for k > 2. In this
paper we (i) show that the single-particle dynamics can be traced back to an
effective dynamical system (with only one degree of freedom), (ii) compute the
diffusion constant analytically, (iii) determine analytically several properties
of the self-correlation functions apart from the relaxation times which we
calculate numerically, (iv) relate the collective correlation functions to those of
the effective degree of freedom using an exact Dyson-like equation, (v) using
two analytical methods, calculate the saddles of the PES that are visited by the
system evolving at fixed temperature. On the one hand we minimize |∇V |2,
as usually done in the numerical study of supercooled liquids and, on the other
hand, we compute the saddles with minimum distance (in configuration space)
from initial equilibrium configurations. We find the same result from the two
calculations and we speculate that the coincidence might go beyond the specific
model investigated here.
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1. Introduction

In the last few years there has been an intensive study [1–7] concerning the connection between
the slow dynamics of complex systems and the extrema of the potential energy surface (PES),
defined through the potential energy function V (q), following the seminal work of Stillinger
and Weber [8].

Two ways of studying the dynamics of supercooled liquids and glasses that are based
on the analysis of the PES have been of particular importance in the recent past. The
first one concerns the analysis of the properties (energy location, number, curvature, and so
on) of the minima of the PES that are visited by the system during its evolution at fixed
temperature. Assigning to each minimum its zero-temperature basin of attraction, one obtains
a partition of the phase space allowing to define a configurational entropy for the supercooled
and the out-of-equilibrium glassy regime [9]. The properties of the minima of the PES
have also been connected to several features of supercooled liquids and glasses. We can
mention their relation to the fragility of the glass former [3], the diffusion processes in
supercooled liquids [4, 10–12] and the effective fluctuation–dissipation temperature [14–16]
in the out-of-equilibrium glassy phase [13]. This method is closely related to Edwards’
proposal [18] to describe the main properties of granular matter with a flat measure over
blocked configurations that correspond to the minima of the PES. Note that granular matter
is an effectively zero-temperature system for which the study of the energy landscape is fully
justified.

The second approach, which corresponds to the study of the instantaneous normal modes,
is based on the study of the eigenvalues of the Hessian at the instantaneous configurations
along the trajectory (in configurational space) that the system follows during its dynamical
evolution [19, 20]. This approach allowed one to relate the diffusion process to the local
curvature of the landscape.

More recently a third approach has been proposed [21, 22] and applied [23–28] to study
the slow dynamics in supercooled liquids. Within this approach, the saddles of the potential
energy surface play a central role. It has been found numerically that the order of the saddles
(number of negative eigenvalues of the Hessian matrix) visited during the equilibrium dynamics
at temperature T extrapolates to zero when T reaches the dynamic transition temperature TMCT

(or mode-coupling temperature [29]).
The role of the stationary points of the PES (saddles and minima) has been also pointed

out in a different context. Indeed, studies aiming to clarifying the microscopic origin of
phase transitions suggest that the presence and the order of such transitions are related to
changes in the topology of the manifold of the PES sampled by the system when crossing
the (thermodynamic) critical point [30, 31]. This has been observed by counting the number
and the order of the stationary points of V (q) and building up the Euler characteristic of the
manifold. The latter is a genuine topological property of the energy surface defined by V (q) =
constant, and, in particular, it does not depend on the statistical measure defined on it (i.e., on
temperature).

Disordered mean-field spin models have been proposed to mimic the behaviour of
supercooled liquids and glasses. Their statics and dynamics, as well as the properties of
their free-energy and energy landscapes, are amenable to analytical studies [16]. The main
features mentioned in the previous paragraphs are realized by these models where, at finite
temperature, the geometry of the free-energy landscape replaces the PES. In particular, the
importance of saddles in the free-energy landscape for the evolution of these systems has been
elucidated in the past and a comparison between the roles played by free-energy and energy
landscapes has also been discussed in this and more general contexts [32, 33].
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If one wishes to relate the equilibrium dynamics of a complex system to the properties
of the saddles of its PES, an unambiguous definition of saddle visited during the equilibrium
dynamics is mandatory. Until now, two different definitions have been used. (1) In the
numerical simulations of simple models—but still too hard to study analytically—such as
Lennard-Jones systems, a partitioning of the configuration space in basins of attraction of
saddles is obtained via an appropriate function W (usually W = |∇V |2) that has a local
minimum on each stationary point of V , and the saddles are then obtained via a minimization of
W starting from an equilibrium configuration obtained from a molecular dynamics simulation
at temperature T. (2) In the analytic computations applied to disordered mean-field spin models
one looks to the saddles that are closest, with respect to some distance in the configuration
space, to a reference configuration extracted from the Gibbs distribution at temperature T
[34]. Unfortunately, until now the two methods have been applied to different models so the
comparison between them is still qualitative.

In this paper, we study a very simple mean-field model without quenched disorder,
the k-trigonometric model (kTM), for which one can calculate analytically all the relevant
quantities that have been previously studied numerically for more realistic models. In spite
of its simplicity, the thermodynamic behaviour of this model is quite rich, and its PES shows
some of the features that have been observed in the PES of Lennard-Jones systems [21–27].
Unfortunately, the model is too simple to show interesting dynamics. The dynamical behaviour
is closely related to the thermodynamics and, due to the absence of frustration or disorder, no
dynamical arrest is observed. Still, on the one hand we have been able to check analytically
the validity of some ideas that had been proposed in the literature and, on the other hand,
to elaborate a method for the minimization of W = |∇V |2 that will be of use for a larger
class of mean-field models including the disordered ones. This method allowed us to compare
analytically the two definitions of closest saddles to equilibrium configurations, and to show
that they coincide in our model.

The paper is organized as follows. In section 2 we introduce the model and present its main
features. Then we analyse its static properties: in section 3 we discuss its thermodynamical
behaviour, in section 4 we study the topological properties of the PES and relate them to the
results of section 3. In sections 5 and 6 we present a detailed study of the dynamical behaviour
of the model. Then, in section 7 we discuss the definition of the closest saddles to equilibrium
configurations, their properties and their relation with the dynamics of the system. Many of
the calculations require the introduction of a formalism that may not be familiar to all the
readers and is not really necessary to follow the relevant part of the presentation; they are then
presented in detail in the appendices.

2. The model

The k-trigonometric model (kTM) has been introduced in [31] with the aim of studying the
relation between phase transitions and topological properties of the PES. The model is defined
by the Hamiltonian

H = �

Nk−1

∑
i1,...,ik

[
1 − cos

(
ϕi1 + · · · + ϕik

)] = N�(1 − Re zk) (1)

having introduced the ‘magnetization’

z = 1

N

∑
i

eiϕi = ξ eiψ. (2)

Here ϕi ∈ [0, 2π), i = 1, . . . , N , are angular variables and � is the energy scale. It is easy to
see that the model is not invariant under continuous transformations of ϕi but only under the
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discrete group Ckv generated by

ϕi → ϕi +
2π

k
ϕi → −ϕi. (3)

If one interprets the variable ϕi as the angle between a two-dimensional unitary vector and a
fixed axis, the transformations in equation (3) are rotations by an angle 2π/k of the vector
and the reflection with respect to the fixed axis. In the low temperature phase this symmetry
is broken, and a spontaneous magnetization is generated in a direction ψn = 2πn/k. We
will often choose ψ = 0 without loss of generality, in order to keep unbroken the symmetry
ϕi → −ϕi .6

The system is subject to a dynamics generated by a Langevin equation [35],

γ ϕ̇i = −∂H

∂ϕi

+ ηi (4)

where γ /� is the time scale and ηi is a Gaussian noise with

〈ηi(t)〉 = 0 〈ηi(t)ηj (t
′)〉 = 2T γ δij δ(t − t ′). (5)

We will consider averages of a generic observable A({ϕ}) over the noise distribution, and we
choose random initial data (that correspond to a quench from infinite temperature). Eventually,
we will consider the t → ∞ limit, in which the system equilibrates and is described by the
Gibbs ensemble at temperature T.

3. Thermodynamics

The thermodynamics of mean-field models is exactly solved neglecting the correlations
between different degrees of freedom and obtaining an effective Hamiltonian that contains
a parameter to be determined self-consistently. For example, in the fully connected Ising
model, with Hamiltonian H = −(2N)−1∑

ij sisj , the substitution reads sisj → 〈si〉sj +
si〈sj 〉− 〈si〉〈sj 〉. Defining m = 〈si〉, one obtains the effective Hamiltonian H(s) = ms + c(m)

for a single degree of freedom s (c(m) is an irrelevant constant that depends only on m). The
self-consistency equation is finally obtained calculating m = 〈s〉 on this effective Hamiltonian.
In fact, one can show that this procedure is equivalent to the evaluation of the free energy at
the saddle point in the N → ∞ limit.

The generalization of this procedure to the kTM is obtained substituting in equation (1)
the expression

eiϕi1 · · · eiϕik → k eiϕi1 〈eiϕi2 〉 · · · 〈eiϕik 〉 − (k − 1)〈eiϕi1 〉 · · · 〈eiϕik 〉 (6)

and introducing the mean (complex) ‘magnetization’ ζ = 〈eiϕ〉, that has to be determined
self-consistently on the mean-field effective Hamiltonian H. As we always choose ψ = 0, ζ

is real and the effective Hamiltonian reads

H = �[1 + (k − 1)ζ k − kζ k−1 cos ϕ]. (7)

The self-consistency equation for ζ turns out to be

ζ = 〈cos ϕ〉H = I1(β�kζ k−1)

I0(β�kζ k−1)
(8)

where β = 1/T , I0(α) = (2π)−1
∫ 2π

0 dϕ eαcos ϕ and I1(α) = I ′
0(α) are the modified Bessel

functions of order 0 and 1 respectively. For each β equation (8) gives the thermodynamic value
of the mean magnetization ζ(T ). The value ζ = 0 always solves equation (8), but is a stable
6 Obviously, if ψ = 2πn/k �= 0, the unbroken symmetry is ϕ → 2ψ − ϕ.
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Figure 1. Mean magnetization ζ as a function of temperature for k = 1, 2, 3. For k = 3 the value
of the canonical transition temperature T0 = 0.63 is indicated by a dotted vertical line, while the
temperature Tc = 0.72 at which the magnetic solution disappears is marked by a white dot. The
magnetic solution is metastable for T0 < T < Tc; the same happens to the ζ = 0 solution for
T < T0.

solution only at low β (high temperature). As β is increased other solutions may appear, and
one has to consider the one that minimizes the free energy as the stable one, while the other
solutions can be either unstable or metastable. In figure 1 we report the function ζ(T ) for
k = 1, 2, 3. For k = 1 the curve is smooth, no phase transition occurs and the magnetization
approaches zero at high temperature. For k = 2 a second-order phase transition takes place
at Tc = �, separating a high temperature paramagnetic phase, where only the solution ζ = 0
exists, and a low temperature ordered phase, where ζ = 0 becomes a maximum of the free
energy separating two minima with ζ �= 0 corresponding to ψ = 0 and ψ = π . From this
symmetry structure one sees that for k = 2 the model is in the universality class of the Ising
model; the (scalar) order parameter is the real part of the magnetization, while the imaginary
part is never different from zero. The critical exponents are then the classical mean-field
exponents of the Ising model; in particular we have ζ ∼ |T − Tc|1/2 close to Tc and, if a
perturbation δH = −h cos ϕ is added, ζ ∼ h1/3 at T = Tc. For k = 3 (and also for k > 3,
not reported in the figure) the system undergoes a first-order phase transition. At high T
only the paramagnetic solution ζ = 0 exists, but on lowering T two other solutions appear at
T = Tc: the magnetic one with ζ > 0 and degeneration k (i.e. k different possible values of
ψ) and the one corresponding to the maximum of the free energy separating the magnetic and
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Figure 2. Potential energy e (full lines) and saddle energy es (dashed lines, see section 7) as a
function of temperature for k = 1, 2, 3. The notation is the same as in figure 1.

paramagnetic solutions. The magnetic minimum becomes stable at T = T0 < Tc. In figure 1,
for the k = 3 case, we show the evolution of the two minima as a function of temperature. The
second minimum appears at Tc = 0.72 (white dot in the figure) and the transition temperature
T0 = 0.63 is indicated by a dotted vertical line. In figure 2 the temperature dependence of
the potential energy e = 〈H〉 = �(1 − ζ k) (full lines in the figures) is shown for k = 1, 2, 3.
The first-order phase transition also manifests itself in a discontinuity of the potential energy
as a function of temperature.

4. Topological properties of the energy surface

In this section we will study the properties of the stationary points (saddles) of the potential
energy surface (PES) of the system, defined by the Hamiltonian (1). We will now focus only
on the topological properties of the saddles, while in section 7 we will study the properties
of the saddles sampled by the system equilibrated at temperature T. We will now follow
the derivation in [31], while in appendix A we present a different derivation that will be
useful in the following. The stationary points ϕ̄ are defined by the condition dH(ϕ̄) = 0,
and their order ν is defined as the number of negative eigenvalues of the Hessian matrix
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Hij (ϕ̄) = (∂2H/∂ϕi∂ϕj )|ϕ̄ . To determine the location of the stationary points we have to
solve the system

∂H

∂ϕj

= −�k Re[izk−1 eiϕj ] = �kξk−1 sin[(k − 1)ψ + ϕj ] = 0 ∀j (9)

where we have used the definition z ≡ ξ eiψ given in equation (2). A first group of solutions
arises for ξ = 0; from equation (1) we have H(ϕ) = N�[1 − ξk cos(kψ)], and then the
stationary points with ξ(ϕ̄) = 0 are all located at the energy e = H(ϕ̄)/N = �. We will
now restrict ourselves to the region e �= � because, as we will see at the end, the quantities in
which we are interested are singular when e = �. The presence of this singularity seems to be
related, as we discussed elsewhere [31], to the presence (and the order) of a phase transition.
For e �= �, equation (9) becomes

sin[(k − 1)ψ + ϕj ] = 0 ∀j (10)

and its solutions are

ϕ̄m
j = [mjπ − (k − 1)ψ]mod 2π (11)

where mj ∈ {0, 1} and m ≡ {mj }. Therefore, besides the different possible values of ψ , each
stationary point ϕ̄m is characterized by the set m. To determine the unknown constant ψ we
have to substitute equation (11) in the self-consistency equation

z = ξ eiψ = N−1
∑

j

eiϕj = N−1 e−iψ(k−1)
∑

j

(−1)mj . (12)

If we introduce the quantity n(ϕ̄) defined by

n = N−1
∑

j

mj 1 − 2n = N−1
∑

j

(−1)mj (13)

and we have from equation (12)

ξ = |1 − 2n| ψl =
{

2lπ/k for n < 1/2
(2l + 1)π/k for n > 1/2

(14)

where l ∈ Z, then the choice of the set m is not sufficient to specify the set {ϕj } because
the constant ψ can assume some different values. This fact is connected with the symmetry
structure of the potential energy surface (the different values of ψl generate the multiplets of
stationary points). We have then obtained that all the stationary points of energy e �= � have
the form

ϕ̄
m,l
j = [mjπ − (k − 1)ψl]mod 2π . (15)

The Hessian matrix is given by

Hij = �k Re[N−1(k − 1)zk−2 ei(ϕi+ϕj ) + δij z
k−1 eiϕi )]. (16)

In the thermodynamic limit it becomes diagonal,

Hij = δij�kξk−1 cos(ψ(k − 1) + ϕi). (17)

One cannot a priori neglect the contribution of the off-diagonal terms to the eigenvalues
of H, but we have numerically checked that their contribution changes the sign of at most
one eigenvalue out of N. Neglecting the off-diagonal contributions, the eigenvalues λj of the
Hessian calculated at the stationary point ϕ̄ are obtained substituting equation (15) in (17),

λj = (−1)mj �kξk−1 (18)
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Figure 3. The logarithm σ of the number of saddles and the saddle order n as a function of the
energy level e for k = 1, 2, 3.

so the stationary point order ν(ϕ̄), defined as the number of negative eigenvalues of the Hessian
matrix, is simply the number of mj = 1 in the set m associated with ϕ̄; we can identify the
quantity n(ϕ̄) given by equation (13) with the fractional order ν(ϕ̄)/N of ϕ̄. Then, from
equations (1) and (14) we get a relation between the fractional order n(ϕ̄) and the potential
energy e(ϕ̄) = H(ϕ̄)/N at each stationary point ϕ̄. It reads

n(e) = 1

2

[
1 − sgn

(
1 − e

�

) ∣∣∣1 − e

�

∣∣∣1/k
]

. (19)

Moreover, the number of stationary points of given order ν is simply the number of ways
in which one can choose ν times 1 among the {mj }, see equation (15), multiplied by a
constant Ck that does not depend on N and takes into account the degeneracy introduced by
equation (14). Therefore, (i) the fractional order n = ν/N of the stationary points is a well-
defined monotonic function of their potential energy e, given by equation (19), and (ii) the
number of stationary points of a given order ν is Ck

(
N

ν

)
. We can define the quantity

σ(e) = lim
N→∞

1

N
log

(
N

Nn(e)

)
= −n(e) log n(e) − (1 − n(e)) log(1 − n(e)) (20)

that represents the ‘configurational entropy’ of the saddles. In [31] we have shown that this
quantity is related to the Euler characteristic of the manifolds Me = {ϕ|H(ϕ) � Ne} and that
its singular behaviour around the point e = � is related to both the presence and the order of
the phase transitions that occur for k � 2. In figure 3 the quantities σ(e) and n(e) are reported
for k = 1, 2, 3 for all values of e �= �: one can see that the presence of a phase transition for
k � 2 is signalled by a singularity in the first derivative of σ(e). The order of the transition
seems to be related to the sign of the second derivative of σ(e) around the transition point,
that is negative for second-order phase transitions and positive for first-order ones.
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5. Single-particle dynamics

The single-particle dynamics can be studied by means of observables of the form

A({ϕ}) = 1

N

∑
i

A(ϕi). (21)

Some interesting quantities are, for example, the diffusion constant D(T ), defined as

D(T ) = lim
t→∞

1

2Nt

∑
i

〈|ϕi(t) − ϕi(0)|2〉 (22)

(where obviously the angular variables have to be considered as variables defined on the whole
real axis without introducing the periodic condition ϕi + 2π = ϕi) and the self-correlation
function, defined as

F(t, t ′) = 1

N

∑
i

[〈ei[ϕi (t)−ϕi (t
′)]〉 − 〈eiϕi (t)〉〈e−iϕi (t

′)〉]. (23)

To study the single-particle dynamics, we introduce an effective dynamical system for a single
degree of freedom ϕ, defined by


H(ϕ, t) = −� Re[kζ(t)k−1 eiϕ]

γ ϕ̇(t) = − ∂H
∂ϕ

(ϕ(t), t) + η(t)

ζ(t) = 〈eiϕ(t)〉
(24)

where again η is a δ-correlated Gaussian noise with variance 2γ T and the averages are
calculated on its distribution. Note that the derivative of the effective Hamiltonian H(ϕ, t) is
performed with respect to ϕ at fixed time t (the time dependence of H is encoded in ζ(t)).
The last equation is, as in the static case, a self-consistency equation. In appendix B we show
that the averages of observables of type (21) on the dynamics defined by equation (4) can be
calculated using this effective single-variable dynamical system:

〈A({ϕ})〉 = 〈A(ϕ)〉H. (25)

We will consider the limit t → ∞ in which the system is in equilibrium, and ζ does not
depend on t and is equal to its equilibrium value ζ(β) given by equation (8). In this limit the
correlation function (23) depends only on the time difference, F(t, t ′) = F(t − t ′), and the
dynamical system (24) reduces to

γ ϕ̇(t) + k�ζ(β)k−1 sin ϕ(t) = η(t). (26)

If ζ �= 0, we can define the reduced variables t̃ ≡ k�ζ k−1

γ
t and η̃(t̃) ≡ 1

k�ζ k−1 η(t), and
equation (26) can be rewritten as

dϕ

dt̃
+ sin ϕ(t̃) = η̃(t̃) (27)

with 〈η̃(t̃ )η̃(0)〉 = 2T
k�ζk−1 δ(t̃) ≡ 2T̃ δ(t̃). The k dependence is then encoded in t̃ and T̃ .

5.1. The diffusion constant

The analytical expression for the diffusion constant of equation (27) is found, for example, in
[36] and is given by

D̃(T̃ ) = lim
t̃→∞

1

2t̃
〈|ϕ(t̃) − ϕ(0)|2〉 = T̃

I0(T̃ −1)2
. (28)
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Figure 4. Logarithm of the diffusivity D as a function of the temperature T for k = 1, 2, 3. For
k = 3 the notation is the same as in figure 1. The dashed line is the value of D in the paramagnetic
phase, D = T/γ .

Then, from the definition of D given by equation (22) and from equation (25) one gets

D(T ) = k�ζ k−1

γ
D̃(T ) = T

γ
I0(kβ�ζ(T )k−1)−2. (29)

In figure 4 we report D as a function of temperature T in a semilogarithmic scale. At low
temperature equation (29) predicts an Arrhenius behaviour:

D(T � �)  2π�k ek−1

γ
e−β2�k. (30)

In the high temperature paramagnetic phase one has ζ ≡ 0 so that equation (27) reduces
to a free Brownian motion and the diffusion constant is simply given by D = T/γ .7 It is
worth noting that for k = 1 the paramagnetic phase does not exist and D = T/γ is only the
asymptotic limit of equation (29) for T → ∞.

5.2. The self-correlation function

As we have already discussed, the model is not rotationally invariant, and when the Ckv

symmetry is broken a spontaneous magnetization appears, whose phase can be an integer
multiple of 2π/k. We will choose the phase to be zero in order not to break the ϕi → −ϕi

symmetry. In this situation, it is expected that even and odd functions of ϕ have different
behaviour. Therefore, it is convenient to separate the contributions in F(t) given by the real and
imaginary parts of eiϕi . Using the relations 〈cos(ϕi(t)) sin(ϕi(0)〉 = 0 and 〈sin(ϕi(t))〉 = 0,
due to the unbroken symmetry ϕi → −ϕi , we can define from equation (23) (setting t ′ = 0

7 While for ζ = 0 equation (27) makes no sense (T̃ is infinite), we obtain the correct result for the diffusion constant
in the paramagnetic phase substituting ζ = 0 in the expression obtained in the magnetic phase. This will not be the
case for the relaxation times of the correlation functions.
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because of the time translation invariance)

F(t) = Fc(t) + Fs(t)

Fc(t) = 1

N

∑
i

[〈cos ϕi(t) cos ϕi(0)〉 − 〈cos ϕi(t)〉〈cos ϕi(0)〉] (31)

Fs(t) = 1

N

∑
i

〈sin ϕi(t) sin ϕi(0)〉.

As previously discussed, see appendix B or equation (25), the above correlations are equal to
those calculated using the effective dynamical system (24); at equilibrium they are given by

F(t) = F(t) ≡ 〈ei[ϕ(t)−ϕ(0)]〉H − 〈eiϕ(t)〉H〈e−iϕ(0)〉H. (32)

We will use for F(t) the same notation used for F(t), see equations (31).

5.2.1. The reduced system. To compute the correlation functions, it is useful to use again
the reduced variables and equation (27). Unfortunately, we have not been able to derive an
analytic expression for the correlations in the whole T̃ range, but only in the high and low
temperature limits. In these limits, the correlation functions turn out to be exponentials:

Fc(t̃) = 〈cos ϕ(t̃) cos ϕ(0)〉 − 〈cos ϕ〉2 = Ac exp

[
− t̃

τ̃c

]

Fs(t̃) = 〈sin ϕ(t̃) sin ϕ(0)〉 = As exp

[
− t̃

τ̃s

]
.

(33)

It is important to note that the amplitudes of these correlations (which are equal to those of
the original system as the variables ϕ are not rescaled) are analytically computable at each
temperature and are given by

Ac = 〈cos2 ϕ〉 − 〈cos ϕ〉2 = 1 − T̃ ζ(T̃ ) − ζ(T̃ )2

As = 〈sin2 ϕ〉 = T̃ ζ(T̃ )
(34)

where ζ(T̃ ) is the magnetization expressed as a function of T̃ and determined self-consistently
by equation (8). The relaxation times are related to the real ones by τc,s = γ

k�ζk−1 τ̃c,s . The
limits in which equations (33) are analytically obtained are as follows:

• High T̃ limit: if T̃ → ∞ one can neglect in equation (26) the term proportional to sin ϕ.
In this case the dynamics is close to a free Brownian motion and the correlation functions
are exponentials with τ̃c ∼ τ̃s ∼ 1/T̃ and As ∼ Ac ∼ 1/2.

• Low T̃ limit: the low temperature limit is obtained by considering ϕ(T̃ ) � π/2 and (i)
by expanding sin ϕ ∼ ϕ in equation (27) and (ii) by approximating Fs(t̃) ∼ 〈ϕ(t̃)ϕ(0)〉
and Fc(t̃) ∼ 1

4 [〈ϕ2(t̃)ϕ2(0)〉 − 〈ϕ2〉2]. In approximation (i) the equation of motion (27)
is easily solved, the correlation functions are exponentials and one obtains

Ac = T̃ 2

2
τ̃c = 1

2
As = T̃ τ̃s = 1. (35)

The expressions for the amplitudes are consistent with equation (34) observing that in
this limit ζ ∼ 1 − T̃

2 − T̃ 2

8 .

The complete T̃ dependence is obtained by solving equation (27) numerically: the numerical
solution has been performed using (i) the true dynamical system (defined through equations
(1) and (4)), and (ii) the effective one defined by equation (27). In both cases the reduced
variables (t̃ and η̃) have been used. The integration of the true dynamical system allowed
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Figure 5. The correlation functions of cos ϕ and sin ϕ calculated using equation (27) for two
different values of T̃ . They are well fitted by an exponential form.

the self-correlation and the collective correlation functions to be derived numerically (in each
case for both the sin ϕ and cos ϕ variables). The self-correlation functions, that for a check have
been compared to those obtained through the integration of the effective dynamical systems,
were fitted to an exponential decay to derive the parameters Ac, As, τc and τs . The simulated
system is composed of N = 1000 degrees of freedom (in the case of the effective dynamical
systems, the N independent degrees of freedom have been used to collect a statistical average
over the initial conditions). The equation of motion has been integrated by a simple constant
step size (dt̃ = 0.001) Runge–Kutta method, and the RAND [37] Fortran routine has been used
to generate the Gaussian noise η̃. At each temperature we performed an equilibration of 5×106

integration steps followed by 5×106 steps of data collection. The time history of the variables
ϕ has been stored and a multi-step circular buffer scheme has been employed to calculate
the appropriate correlation functions. We found that for any T̃ the correlations are well (but
not exactly) described by equation (33); in figure 5 we report some correlations calculated
numerically for intermediate T̃ values, together with an exponential fit. The relaxation times
obtained numerically are reported in figure 6. They have been fitted for simplicity with a
polynomial function,

τ̃ (T̃ ) = τ̃ (0)(1 + P1T̃ ) + P3T̃
2

1 + P1T̃ + P2T̃ 2 + P3T̃ 3
(36)

where τ̃ (0) is given by equation (35). The previous expression reproduces the correct high
and low T̃ limits. The values of the parameters Pi are

τ̃c: P1 = 0 P2 = 0.90 P3 = 6.28

τ̃s : P1 = 1 P2 = 1.66 P3 = 6.28.

The relaxation times obtained by the numerical calculations are reported in figure 6 together
with the corresponding fit and the high and low temperature expansions. Having an
(exact) expression for the amplitudes (equation (34)) and another for the relaxation times
(equation (36), extrapolated from numerical data) we can discuss the behaviour of the
correlation functions for any value of k by substituting in these expressions T̃ = T

k�ζk−1 .
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Figure 6. Relaxation times of the correlation functions of equation (27). The symbols are the
result of the numerical calculation, while the dashed lines are the fits and the dot (dot-dashed) line
is the high (low) temperature expansion.

5.2.2. k = 1. For k = 1 we have T = �T̃ and τc,s = γ

�
τ̃c,s , so that the behaviour of the

relaxation times is obviously the same as in figure 6. The amplitudes, that we do not report,
are analytic functions of the temperature.

5.2.3. k = 2. As reported before, for k = 2 a second-order phase transition takes place
at Tc = �. The parameters A and τ for this case are reported in figure 7. We have that
T̃ → ∞ by approaching the phase transition from the magnetic phase, so Ac,s → 1

2 and
τc,s → γ /Tc = γ /� at the transition. In the paramagnetic phase one has ζ ≡ 0, so that
equation (26) reduces to a free Brownian motion; then Ac = As = 1/2 and τc = τs = γ /T

exactly for all temperatures above Tc. We obtain then that A and τ are continuous functions
of temperature but their derivatives have a discontinuity at Tc.

5.2.4. k � 3. For k � 3 a first-order phase transition takes place. The parameters A and τ

are reported in figure 8. In this case T̃ does not diverge approaching the transition temperature,
while the behaviour in the high temperature paramagnetic phase is the same as for k = 2.
Then, obviously, A and τ are discontinuous at the transition.

6. Collective dynamics

To study the collective behaviour of the system we introduce the correlation function of the
magnetization z. It is defined by

G(t, t ′) = 1

N

∑
ij

[〈ei[ϕi (t)−ϕj (t
′)]〉 − 〈eiϕi (t)〉〈e−iϕj (t

′)〉]

= N [〈z(t)z∗(t ′)〉 − 〈z(t)〉〈z∗(t ′)〉]. (37)

Again, with the aim of obtaining simple exponential behaviour of the correlation functions,
it is convenient to separate the contributions coming from the real and imaginary parts of the
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Figure 7. The parameters of the self-correlations for k = 2. The symbols are the result of the
numerical calculation. The full lines are obtained from analytic computation, while the dashed
lines are obtained from the polynomial fit (equation (36)) on the reduced system and the substitution
of T̃ with its value for k = 2 (see text). The agreement is not perfect around Tc due to finite size
effects.
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Figure 8. The parameters of the self-correlations for k = 3 (with the same notation used in
figure 7). The vertical lines mark the transition temperature T0; the numerical calculations can be
done also in the metastable phases around T0. The white dots mark the points at which the two
solutions with ζ �= 0 disappear.
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magnetization, defining

Gc(t, t
′) = 1

N

∑
ij

[〈cos ϕi(t) cos ϕj (t
′)〉 − 〈cos ϕi(t)〉〈cos ϕj (t

′)〉]

Gs(t, t
′) = 1

N

∑
ij

〈sin ϕi(t) sin ϕj (t
′)〉.

(38)

These correlations are related to the Gaussian correction around the thermodynamic limit, i.e.
the leading correction in 1/N for N → ∞. In appendix C we derive a general expression
(equation (C.19)) that relates G(t) to the self-correlation function F(t) defined in the previous
section. Using this expression and assuming that (i) the magnetization is always real and (ii)
Fc,s(t) are given by equation (33), Gc,s(t) turn out to be also exponentials and are given by

Gc(t) = ZcAc exp

[
− t

Zcτc

]
Gs(t) = ZsAs exp

[
− t

Zsτs

]
(39)

where

Zc = 1

1 − β�k(k − 1)ζ(β)k−2Ac

Zs = 1

1 + β�k(k − 1)ζ(β)k−2As

. (40)

As expected in the absence of interactions, for k = 1 we have Zc = Zs = 1, so that
G(t) = F(t) at all temperatures. In order to treat the k � 2 case we define

Gc,s(t) = AG
c,s exp

[
− t

τG
c,s

]
(41)

with

AG
c,s = Zc,sAc,s τG

c,s = Zc,sτc,s . (42)

From the analytic expression for Ac,s , given by equation (34), we get an analytic expression
for the constants Zc,s . The exact expressions for the parameters AG

c,s , that are connected by
the fluctuation–dissipation theorem to the susceptibilities of the magnetization, can then be
derived. The relaxation times of G(t) are obtained from those of F(t), that we studied in
the previous section, using equation (36). Then, their expression is not exact but derives
from the numerical data on the reduced system that we defined in the previous section. To
emphasize this, in figures 9 and 10 we report as a full line the exact expressions and with a
dashed line the expressions derived using the numerical solution of the reduced system and
equation (42).

6.1. k = 2

The parameters AG and τG given by equation (42) for k = 2 are reported in figure 9.
From the symmetry structure of the model, we know that it can acquire a spontaneous
magnetization in the directions ψ = 0 and ψ = π , but not in the orthogonal direction.
Then we expect a divergence in the amplitude and in the relaxation time of Gc(t) but not
in the same parameters of Gs(t). In the high temperature paramagnetic phase we have
Ac = As = 1/2 and τc = τs = γ /T (see the discussion of the k = 2 case in the previous
section); then Zc = 1/(1 − β�) and Zs = 1/(1 + β�). From these expressions and
equation (42) we get an expression for AG and τG in the paramagnetic phase (full lines in
figure 9). It is easy to see that close to Tc one has AG

c ∼ |T −Tc|−1 and τG
c ∼ |T −Tc|−1. The

same behaviour is obtained approaching the transition temperature from below, as one can
easily check remembering that for T → T −

c one has T̃ → ∞, Ac,s → 1/2, τc,s → γ /T . We
obtain again the classical mean-field critical exponents for the universality class of our model.
In the low temperature phase, as previously discussed, the expression for the relaxation times
is not exact, and is reported as a dashed line in figure 9.
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Figure 9. The parameters of the collective correlations for k = 2. As in the previous figures,
the symbols are from numerical computation, the full lines are obtained analytically, while the
dashed lines are obtained using the fitted expression (equation (36)) in equation (42). In the inset
the divergence at Tc of the susceptibility and of the relaxation time related to the real part of the
magnetization is evidenced.
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Figure 10. The parameters of the collective correlations for k = 3 (with the same notation used
in figure 9). In this case AG

c and τG
c diverge in the metastable phase when the metastable solution

disappears (white dot in the figure).
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6.2. k � 3

The parameters AG and τG given by equation (42) for k = 3 are reported in figure 10.
As previously shown, for k � 3 the model undergoes a first-order transition at T0. The
low temperature phase is metastable up to a certain temperature Tc (see figure 1) where it
disappears, while the high temperature phase is metastable down to T = 0. In the high
temperature phase we have, as in the k = 2 case, Ac = As = 1/2 and τc = τs = γ /T . But
for k � 3 we have Zc = Zs = 1, so that G(t) = F(t). We note that AG

c,s does not diverge in
this phase, and the same happens to τG

c,s that diverge only for T → 0. In the low temperature
phase, it is easy to see (substituting equation (34) in (40)) that Zs = 1/k; this happens for
all k if ζ �= 0. Then, AG

s and τG
s are simply proportional to As and τs respectively, and do

not show any anomaly. The behaviour of Zc is more interesting: using its definition given in
equation (40), equations (8) and (34), one can show that Zc → ∞ when T → T −

c . Thus, AG
c

and τG
c diverge in the metastable region of the paramagnetic phase approaching the temperature

at which the paramagnetic phase itself disappears. Again, the expression for τG is obtained
using equation (36), and is reported as a dashed line in figure 10.

7. Closest saddles to equilibrium configurations

The important role that stationary points (saddles) of the potential energy surface (PES) play
in the dynamics of various systems has been clarified recently [21–28, 34]. From previous
works it seems that, in order to describe the equilibrium dynamics at a given temperature T,
it is sufficient to know the properties of some of them, that have often been called the ‘closest
saddles to the equilibrium configurations at temperature T.8 To locate these particular stationary
points, two main strategies have been adopted: (1) defining in a proper way a ‘distance’ in
phase space and, given an equilibrium configuration, looking at the stationary point that has
minimum distance from this configuration; (2) partitioning the phase space in ‘basins of
attraction’ of stationary points via an appropriate function that has a local minimum on each
stationary point. While the first approach has been exploited analytically on some disordered
spin models [34], the second one has been extensively used in numerical simulations of simple
model liquids [21–27].

The problem with definition (2) is that one has to define a function W such that each
stationary point of H is a local minimum of W and each local minimum of W is a stationary point
of H. Otherwise, while looking for the closest saddle starting from a reference configuration
one can remain trapped in some local minimum of W that is not a stationary point of H. It has
been shown in [24] that this possibility effectively arises in the majority of the cases if one
chooses, as usual in simple liquids, W = |∇H |2.

To compare the two methods avoiding the difficulties of the numerical computations, we
tried to find some models in which the minimization of a function W with the desired property
could be analytically performed. In the k-trigonometric model this function can correctly be
chosen as W = |∇H |2, as we will show that all the minima of W correspond to stationary
points of H. In this section we present a general method for the minimization of W = |∇H |2,
that can probably be extended to treat a large class of mean-field systems without quenched
disorder. We apply this technique to our model and we show that definitions (1) and (2) give
in this case exactly the same result. Note that the idea on which the method is constructed can
also be used with W functions different from that chosen here, even if the practical calculation
might be difficult depending on the particular form chosen for W . Future work will be devoted

8 Another denomination is ‘generalized inherent structures’, see [28].
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to applying our method, if possible, to disordered systems such as the p-spin disordered model
studied in [34].

7.1. Definition of the relevant quantities

In section 4 we studied the properties of the stationary points of the PES that are independent
of the statistical measure that describes the system at temperature T (i.e. they are independent
of temperature). From this study, we were able to find a relation between the energy of a saddle
and its order and to compute the number of saddles, exp(Nσ(e)), located at a given energy
e. Now we want to calculate the energy of the ‘closest saddles to equilibrium configurations
at temperature T’. The procedure used to calculate this quantity is the same used numerically
in [21, 22]: we consider an initial configuration extracted from the Gibbs distribution at
temperature T, and we perform a minimization of

W = |∇H |2 = N�2k2

2
[(zz∗)k−1 − Re(z2k−2z2)] (43)

(where z2 ≡ N−1∑
i e2iϕi ) that leads to a stationary point of the PES that we associate with the

initial configuration. Finally, we average the energy of the stationary point over the equilibrium
distribution of initial data. The minimization of W is performed using the dynamical system

γ ϕ̇i = −∂W

∂ϕi

(44)

that is completely analogous to (4) with H → W and T = 0. We want to calculate the energy
of the configurations in the limit of infinite time starting from a Gibbs ensemble, i.e.

es(T ) = 1

N
lim
t→∞〈H(t)〉W . (45)

From this quantity, we obtain the order of the saddles as a function of temperature using
equation (19) and the ‘configurational entropy’ of the saddles that is given by σ(T ) =
σ(es(T )).

7.2. Effective dynamical system

Using the same argument presented in appendix B for the real dynamics, it is possible to show
that the dynamical system (44) is equivalent to the single-particle one given by



W(ϕ, t) = �2k2(k − 1) Re{[ζ ∗(t)(ζ(t)ζ ∗(t))k−2 − ζ2(t)ζ(t)2k−3] eiϕ}
− 1

2�2k2 Re{ζ(t)2k−2 e2iϕ}
γ ϕ̇(t) = − ∂W

∂ϕ
(ϕ(t), t)

ζ(t) = 〈eiϕ(t)〉
ζ2(t) = 〈e2iϕ(t)〉.

(46)

The derivation is sketched in appendix D; note that an irrelevant constant term has been
neglected in W , so that W is not always positive, while W = |∇V |2 � 0. In this case, we
will calculate the averages over the distribution of initial data setting the noise to zero. As
the system is mean field, the correlations between different degrees of freedom vanish in the
thermodynamic limit and the Gibbs distribution can be written in the form

P({ϕ}) =
∏

i

P(ϕi) =
∏

i

e−βH(ϕi )

Zi

=
∏

i

eβ�k Re[ζ(β)k−1 eiϕi ]

Zi

(47)
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where ζ(β) = ζ(t = 0) is as usual the equilibrium average magnetization. The problem is
then reduced to the calculation of

es(T ) = lim
t→∞〈H(ϕ)〉W (48)

using the dynamical system (46) and averaging over the distribution (47) of initial data.

7.3. Calculation of the energy of the closest saddles

Again we assume that the system is not magnetized or that the mean magnetization has zero
phase. So, we assume that ζ(t) and ζ2(t) are real functions of time. In this case the system
(46) becomes 



W(ϕ, t) = �2k2ζ(t)2k−3[(k − 1)(1 − ζ2(t)) cos ϕ − 1
2ζ(t) cos 2ϕ]

γ ϕ̇(t) = − ∂W
∂ϕ

(ϕ(t), t)

ζ(t) = 〈cos ϕ(t)〉
ζ2(t) = 〈cos 2ϕ(t)〉.

(49)

We want now to show that the first term in W can be neglected, at least in some limits. For
k = 1 the first term disappears and one simply has W = −�2

2 cos 2ϕ. For k � 2, in the
paramagnetic phase one has ζ(0) = ζ2(0) = 0, then W = 0 and the closest saddle is the
starting configuration itself. In the low temperature phase we know that at the initial time
1−ζ2(0) = 2〈sin2 ϕ〉 = 2T

k�ζ(0)k−2 . Then we can neglect the first term with respect to the second
one (at t = 0) if

(k − 1)
2T

k�ζ(0)k−2
� 4

1

2
ζ(0) ⇔ T

�

k − 1

k
� ζ(0)k−1 (50)

where the 4 on the right-hand side comes from the fact that the derivative of the second term is
proportional to 2 sin 2ϕ ∼ 4ϕ while the derivative of the first term is proportional to sin ϕ ∼ ϕ.
This condition is clearly satisfied for low enough temperature because ζ(T = 0) = 1. It is
easy to check (see figure 1) that for k = 3 the inequality is satisfied up to the transition
temperature T0. Obviously, for k = 2 it cannot be satisfied close to Tc where ζ ∼ 0.

If one can neglect the first term at t = 0, it can be neglected at all subsequent times, because
during the minimization of W both ζ(t) and ζ2(t) increase, and ζ2 → 1 rapidly. To give an
argument, let us neglect again the first term in W; then the minima of the pseudopotential are
such that cos 2ϕ = 1, so that increasing time ζ2(t) will move towards 1, that is its infinite
time limit. ζ will increase due to the fact that the final energy is lower than the initial one, as
we will show below. Surprisingly, while we expect all these approximations to work only at
low enough temperature, they give the correct result in the whole temperature range, as we
checked numerically.

In the approximations discussed before, the system (49) becomes of the form{
ϕ̇ = −∇W = −�2k2ζ(t)2k−2 sin 2ϕ

ζ(t) = 〈cos ϕ(t)〉. (51)

We are interested in the infinite time solutions of equation (51), ϕ(t →∞|ϕ0), as a function of
the initial conditions ϕ0 ≡ ϕ(t = 0). Without explicitly solving equation (51), we observe that
the sign of ∇W at fixed ϕ does not change with time, due to the fact that the time-dependent
factor in equation (51) is always positive. This implies that the specific time dependence of
ζ does not affect the final point ϕ(t →∞|ϕ0) reached from a given initial condition, rather it
controls the rapidity of approaching this final point. It is easy to see that the solutions are

ϕ(t →∞|ϕ0) =
{

0 if ϕ0 /∈ (π
2 , 3π

2

)
π if ϕ0 ∈ (π

2 , 3π
2

)
.

(52)
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Figure 11. Saddle energy es versus the thermodynamic energy e for k = 1, 2, 3. The dashed line
is the unstable region that corresponds to the solution of equation (8) that is a maximum of the free
energy.

The solution ϕ = 0 is a minimum of W corresponding to a minimum of the effective potential
energy (equation (7)), while the solution ϕ = π is a minimum of W that corresponds to a
maximum of the effective potential. From equation (52) one can see that at the final point
ζ2 = 1 and |ζ | = 1; then, substituting in equation (43), where ζ and ζ2 have to be considered
as the mean values of z and z2 respectively, one gets W = 0 at the final point. This means
that the final point is a real saddle of the original system, because from the definition of W

it is obvious that W = 0 implies ∇H = 0. Then, in our system it is not possible to remain
trapped in a local minimum of W with W > 0, at variance with what happens in simple
liquids [24]. Note that the same argument cannot be made using W as defined, for example, in
equation (46) because, as already stated, a constant term has been neglected in its definition.

The energy es of the saddle is then obtained as es(T ) = �(1 − ζ(∞)k), where ζ(∞) is
the average of cos ϕ(t →∞|ϕ0) over the distribution (47) of initial data,

ζ(∞) =
∫ 2π

0
dϕ0 P(ϕ0) cos ϕ(t →∞|ϕ0)

=
∫ 2π

0
dϕ0 P(ϕ0) sgn(cos ϕ0) = L0(β�kζ k−1)

I0(β�kζ k−1)
(53)

where we have introduced the modified Struve function of order 0: L0(α) = 2π−1
∫ π/2

0 dϕ

sinh(α cos ϕ). In figure 2 the saddle energies es (dashed lines) are reported as a function
of temperature for k = 1, 2, 3: qualitatively es reproduces the shape of the potential energy
e, and it is always below e, but coincides with e in the paramagnetic region for k � 2, as
previously discussed. The map es versus e is shown in figure 11, where one observes that,
when the parameter k increases, the energy difference between instantaneous configurations
and saddles becomes more and more pronounced. From equation (19) we obtain the saddle
order n as a function of temperature:

n(T ) = 1

2

[
1 − L0(β�kζ k−1)

I0(β�kζ k−1)

]
. (54)

This function is reported in figure 12 for k = 1, 2, 3. At low temperature (high β) equation (54)
is approximated by

n(β � 1) 
√

2 ek−1

πkβ�
e−β�k (55)
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Figure 12. Saddle order as a function of temperature for k = 1, 2, 3.

which corresponds to an Arrhenius behaviour. We have shown in [38] that the behaviour
of n(T ) is related to that of the diffusion constant D(T ), as previously found numerically
in simple model liquids [21], and that the energy barrier appearing in the Arrhenius low
temperature expansion of D(T ) is exactly the energy difference between saddles of order 1
and the underlying minima.

7.4. Distance of the closest saddle to the reference configuration

In this section, we show that the two possible definitions of ‘closest saddles to equilibrium
configurations’ that we discussed above coincide in our model. To this end, we apply the
method introduced in [34] to our model. We compute the quantity

σ(T ; es, d) = 1

N

∫
dϕi

e−βH(ϕ)

Z(T )

× log
∫

dψi δ(H(ψ) − Nes)δ(∂iH(ψ)) det H(ψ)δ(d − d(ϕ,ψ)) (56)

where Hij = ∂i∂jH is the Hessian matrix and d(ϕ,ψ) is some distance function between
the two configurations ϕi and ψi . The argument of the logarithm is the number of stationary
points of energy es and distance d from the reference configuration ϕ (see appendix A or [34]
for a detailed discussion). Then the logarithm of this number (divided by N) is averaged over
the equilibrium distribution at temperature T of the reference configuration.

Using this quantity we can provide a definition of ‘closest saddles to equilibrium
configurations’ [34]: in fact, let the temperature be fixed (and neglect the explicit dependence
on it of all the quantities) and consider σ(es, d) as a function of d at fixed es . This is the number
of saddles of energy es and average distance d from the typical configurations at temperature
T. We expect that for too small distances this quantity will be zero, because there will be no
saddles of energy es at too small distance from the equilibrium configurations. So we can
define d̄(es) as the value of d at which σ(es, d) goes to zero: σ(es, d̄(es)) ≡ 0. Then d̄(es)

is the minimum distance at which one can find saddles of energy es . Now we can minimize
d̄(es) with respect to es : the value ēs of es such that d̄(es) minimum will be the energy of
the closest saddles to the equilibrium configurations, while d̄(ēs) will be the average distance
from these saddles and the equilibrium configuration themselves.
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Figure 13. Mean overlap between instantaneous configuration and the closest saddles (see text)
as a function of temperature for k = 1, 2, 3.

In our model the distance function can be defined as

d2(ϕ, ψ) = 1 − q(ϕ,ψ) = 1 − 1

N

∑
i

cos(ϕi − ψi). (57)

In fact cos(ϕi − ψi) can be interpreted as the scalar product of the unitary spins represented
by the angles ϕi and ψi , so that q(ϕ,ψ) is the overlap between the two configurations. The
calculations are reported in appendix E; the result is that the energy of the saddles is given by
the same expression derived in the previous section,

ēs = es(T ) = �

[
1 −

(
L0(β�kζ k−1)

I0(β�kζ k−1)

)k
]

(58)

where ζ is given by the thermodynamics, see equation (8), while the mean overlap is given by

q̄ =
∫ 2π

0
dϕ P(ϕ)|cos ϕ| = 〈|cos ϕ|〉H = L1(β�kζ k−1)

I0(β�kζ k−1)
(59)

where P has been defined in equation (47) and L1(α) = L′
0(α). Note that this result could

also be derived using the method of the previous section: in fact, we would have, in analogy
to equation (48),

qs(T ) = lim
t→∞〈cos(ϕ(t) − ϕ0)〉W

= 〈cos(ϕ(t → ∞|ϕ0) − ϕ0)〉H(ϕ0) = 〈|cos(ϕ)|〉H = q̄(T ). (60)

Then, we can conclude that in our model the minimization of W starting from an instantaneous
configuration equilibrated at temperature T leads, on average, to that stationary point of the
PES which has maximum overlap with the starting configuration itself. Moreover, we can
calculate the average overlap (or distance) between the equilibrium configurations and the
associated stationary points, that is reported in figure 13 as a function of temperature for
k = 1, 2, 3.

8. Conclusions

In this paper, we presented a study of the thermodynamics and the dynamics of a very
simple mean-field model of N variables interacting through a fully connected k-body
trigonometric term. In spite of its simplicity this model shows interesting behaviour undergoing
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second- or first-order phase transitions depending on the value of k. All the results that we
present here have been obtained analytically (except for the computation of the relaxation
times of the self-correlation function which has been done numerically). In particular, the
dynamics is analysed in detail, and we find a relation between the single-particle dynamics and
the collective one in terms of a Dyson-like equation that links the self-correlation and collective
correlation functions. Using this relation we studied, among other dynamical properties, the
critical slowing down around the second-order phase transition or close to the stability limit in
the case of the first-order phase transition. A rather complete characterization of the geometry
of the potential energy surface (PES) has been achieved. This allowed us to relate some
of the macroscopic properties of the model to the PES characteristics: the thermodynamic
singularities (phase transitions) are located at the same energy as the geometrical ones, and,
in the dynamics, the low temperature behaviour of the diffusion constant is similar to the
behaviour of the order of the saddles visited during the equilibrium dynamics. The concept
of ‘saddles visited during the equilibrium dynamics’ (or ‘generalized inherent structures’) has
been widely used in the literature, even if an unambiguous definition of them has not yet been
found. In this respect, we compared two definitions that have been used in the past, and we
found that they give exactly the same result when applied to the kTM. This result supports
the use of PES to analyse the behaviour of interacting systems and suggests that the present
analysis could be applied to other interesting systems.
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Appendix A. Topological properties of the saddles in mean-field models

In this appendix, we will calculate the number of stationary points of energy e = E/N and
their order using a general method that works well for all mean-field models. Although this
method is well known [34, 39] and in our model the same results can be obtained in a simpler
way, it is useful to recall it here because it will be generalized in appendix E to calculate
the number of saddles of energy e located at a given distance from a reference configuration
equilibrated at a given temperature T.

We introduce the quantity

χ ′(E) ≡
∫

dϕi δ(H − E)δ(∂iH) det H =
N∑

ν=0

(−1)νNν(E) (A.1)

where H is the Hessian matrix (Hij = ∂i∂jH), Nν(E) is the number of stationary points of
H of order ν and energy E, and a product over the index i is omitted. The last equality is
easily checked by noting that the function det H

∏
i δ(∂iH) is equal to (−1)ν if integrated in

a small volume around a stationary point of order ν. According to Morse theory, χ ′(E) is the
derivative with respect to E of the Euler characteristic of the manifolds ME ≡ {ϕ|H(ϕ) � E}
[30]. Using the relations

det H =
∫

dη̄i dηi e
∑

ij ηiHij η̄j δ(∂iH) =
∫

dλi e2π iλi∂iH (A.2)
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where {η, η̄} are Grassman variables [35] we have

χ ′(E) =
∫

dβ

2π
eβE

∫
dϕi dη̄i dηi dλi exp[−βH + ηi∂i∂jH η̄j + 2π iλi∂iH ]. (A.3)

Introducing the superfield

φi(θ, θ̄ ) = ϕi + ηi θ̄ + η̄iθ + 2π iλiθ θ̄ (A.4)

where θ and θ̄ are two other Grassman variables we have

χ ′(E) =
∫

dβ

2π
eβE

∫
Dφi exp

[∫
dθ̄ dθ(1 − βθθ̄)H(φ)

]
. (A.5)

The last equality is easily checked remembering that

H(φ) = H(ϕ) + (ηi θ̄ + η̄iθ + iλiθ θ̄)∂iH(ϕ) + (ηi η̄j θ θ̄)∂i∂jH(ϕ) (A.6)

due to the fact that θ2 = θ̄2 = 0. In mean-field models we can evaluate the integral (A.5) at
the saddle point; from equation (A.1) we see that the integral will be dominated by a particular
value of ν,

χ ′(E) ∼N→∞ (−1)ν̄(E)Nν̄(E)(E) ≡ eNσ(e) (A.7)

so that

lim
N→∞

1

N
log χ ′(E) = lim

N→∞
1

N
(logNν̄(E)(E) + iπν̄(E)). (A.8)

Then we expect that at the saddle point the real part of σ(e) will be the logarithm of the number
of saddles located at energy e, while its imaginary part will be the order of these saddles [34].
We will now calculate explicitly all this quantities in our model. The Hamiltonian of the
k-trigonometric model is written in terms of the variable z = N−1∑

i eiϕi in equation (1).
This variable has a real and an imaginary part. As we want to evaluate equation (A.5) at
the saddle point in z, we will need to consider the real and imaginary parts of z as complex
variables themselves. To avoid confusion, it is convenient to use another imaginary unit I
and define z = N−1∑

i eIϕi = Re z + I Im z. When we consider Re z and Im z as complex
numbers themselves, we will use the notation Re z = Re Re z + i Im Re z. Setting � = 1 we
have (neglecting all the constant prefactors)

χ ′(e) =
∫

dβ eNβe

∫
Dz δ

(
Nz −

∑
i

eIφi

)∫
Dφi exp

[∫
dθ̄ dθ(1 − βθθ̄)N(1 − Re zk)

]

=
∫

dβ eNβe

∫
DzDẑ exp N

{∫
dθ̄ dθ [(1 − βθθ̄)(1 − Re zk) + Re (z iẑ)] + logX (iẑ)

}

X (iẑ) =
∫

Dφ exp

[
−
∫

dθ̄ dθ Re(eIφ iẑ)

]
(A.9)

where we introduced the supervariables z and ẑ (z = z0 +z1θ +z2θ̄ +z3θ θ̄) and the superdelta-
function

δ(z) =
∫

Dẑ exp

[∫
dθ̄ dθ Re(z iẑ)

]
. (A.10)

In the definition of δ(z) and X (iẑ) we note that both imaginary units appear: I serves to
select only the component Re ẑ cos φ − Im ẑ sin φ in the product eIφẑ, but Re ẑ, Im ẑ and φ are
themselves complex superfunctions with respect to i. We will also rotate the integration path
on Re ẑ and Im ẑ in the complex (i) plane (that is equivalent to the substitution iẑ → ẑ); this is
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irrelevant because at the end we will look for the saddle point in the whole complex (i) plane.
We obtain then

χ ′(e) =
∫

dβDzDẑ exp Nσ(z, ẑ, β | e)

σ (z, ẑ, β | e) = βe +
∫

dθ̄ dθ [(1 − βθθ̄)(1 − Re zk) + Re zẑ] + logX (ẑ).

(A.11)

To solve the saddle point equations we will assume that at the saddle point, (i) all the fermionic
components vanish (z1 = z2 = ẑ1 = ẑ2 = 0) and (ii) the Im part of the bosonic components is
always 0 (Im z0 = Im z3 = Im ẑ0 = Im ẑ3 = 0). The first assumption is standard in this kind
of computation. The second one is a consequence of the symmetry structure of the model:
one can always choose the magnetization z = N−1∑

i eIϕi such that its imaginary (in the I
plane) component is zero. Firstly, we will evaluate X (ẑ) in the case in which ẑ has the form
that we have assumed above. We get

X (ẑ) =
∫

Dφ exp

(
−
∫

dθ̄ dθ(ẑ0 + ẑ3θ θ̄) cos φ

)

=
∫

dϕ dη̄ dη dλ exp(ẑ0(2π iλ sin ϕ + ηη̄ cos ϕ) − ẑ3 cos ϕ)

=
∫ 2π

0
dϕ e−ẑ3cos ϕ δ(ẑ0 sin ϕ)ẑ0 cos ϕ. (A.12)

If ẑ0 is real and different from 0 we get

X (ẑ) = −2 sgn ẑ0 sinh ẑ3. (A.13)

Then we obtain

σ(z, ẑ, β | e) = βe + z0ẑ3 + z3ẑ0 − β
(
1 − zk

0

)− kzk−1
0 z3 + log(−2 sgn ẑ0 sinh ẑ3). (A.14)

The saddle point equations are


e = 1 − zk
0

ẑ0 = kzk−1
0

ẑ3 = −βkzk−1
0

z0 = − 1
tanh ẑ3

z3 = 0.

(A.15)

Substituting in σ we obtain

σ(e) = z0ẑ3 + log 2 sinh ẑ3 + log sgn ẑ0. (A.16)

Now, if k is odd or if k is even and e < 1, z0 is real and given by z0 = (1 − e)1/k . Then ẑ0 is
real and equation (A.13) is correct. Note also that ẑ0 is positive so that the last term in σ is 0.
Recalling that tanh−1 x = 1

2 log 1+x
1−x

one has

ẑ3 = tanh−1

(
− 1

z0

)
= 1

2
log

1 − z0

1 + z0
+

iπ

2
. (A.17)

It is interesting to note that as ẑ3 is complex while z0 is real, from the third of the saddle
point equations one obtains that β is complex at the saddle point; this is a consequence of
the strongly oscillating behaviour of χ ′(e). Using the relation sinh x = tanh x√

1−tanh2 x
we get

sinh ẑ3 = i√
1−z2

0

and introducing the variable

n(e) = 1
2 (1 − z0(e)) = 1

2 [1 − (1 − e)1/k] (A.18)



8590 F Zamponi et al

we finally obtain

σ(n) = −n log n − (1 − n) log(1 − n) − iπn (A.19)

and

χ ′(n(e)) ∼ (−1)Nn(e) eNReσ(n(e)). (A.20)

This result is consistent with that obtained in section 4 and with the discussion at the beginning
of this appendix. The case in which k is even and e > 1 is a little more involved and we will
not discuss it here.

Appendix B. Single-particle dynamics

In this appendix we will show that one can use the effective dynamical system (24) to compute
one-particle quantities (defined in equation (21)). We will restrict to the observable eiϕ(t) and its
n-times correlations; the other observables are linear combinations of this one (via a Fourier
expansion). We will use the formalism of the generating functional in its supersymmetric
formulation as presented in [16, 17, 35], and a notation similar to that of appendix A.

B.1. The generating functional

The generating functional of the correlation functions can be written as [16, 17, 35]

Z[h(t)] =
∫

Dφi exp

[
1

2

∑
i

∫
da φi(a)�(2)φi(a) −

∫
da H(φ) + Re

∫
da h(a) eIφ1

]

(B.1)

where θ , θ̄ are Grassman variables, φi(θ, θ̄ , t) is a time-dependent superfield, see
equation (A.4), da = dθ̄ dθ dt, h(a) = h(t)θ θ̄ , h(t) = Re h(t) + I Im h(t) and

�(2) = 2T
∂2

∂θ̄∂θ
− 2γ θ

∂

∂θ

∂

∂t
+ 4γ θθ̄

∂2

∂θ̄∂θ

∂

∂t
. (B.2)

In fact it is easy to check that the self-correlation functions (31) can be written as

F(t, t ′) =
[

δ2Z

δ Re h(t)δ Re h(t ′)
+

δ2Z

δ Im h(t)δ Im h(t ′)
− δZ

δ Re h(t)

δZ

δ Re h(t ′)

− δZ

δ Im h(t)

δZ

δ Im h(t ′)

]
h=0

(B.3)

using the symmetry under permutations of the ϕi . Defining formally the operators

δ

δh(t)
= δ

δ Re h(t)
+ I

δ

δ Im h(t)

δ

δh∗(t)
=
(

δ

δh(t)

)∗
(B.4)

one can see that

F(t, t ′) =
[

δ2Z

δh(t)δh∗(t ′)
− δZ

δh(t)

δZ

δh∗(t ′)

]
h=0

(B.5)

using 〈sin(ϕi(t)) cos(ϕi(t
′))〉 ≡ 0 and 〈sin(ϕi(t))〉 ≡ 0 because of the symmetry ϕ → −ϕ, as

we have already discussed before equation (31). We can generalize this relation defining the
supercorrelator

F(a, b) = 1

N

∑
i

[〈eI (φi (a)−φi(b))〉 − 〈eIφi (a)〉〈e−Iφi (b)〉]

=
[

δ2Z

δh(a)δh∗(b)
− δZ

δh(a)

δZ

δh∗(b)

]
h=0

. (B.6)
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B.2. The saddle point equations

Substituting equation (1) in (B.1) and introducing the supervariable

z(a) = 1

N

∑
i

eIφi (a) (B.7)

we get

Z[0] = 1 =
∫

DφiDz δ

(
Nz(a) −

∑
i

eiφi(a)

)
exp

[∑
i

T (φi) − N�

∫
da(1 − Re z(a)k)

]

(B.8)

where T (φ) = 1
2

∫
da φ�(2)φ. Using the integral representation of the δ-function

δ(z) =
∫

Dẑ exp

[∫
da Re(z(a)iẑ(a))

]
(B.9)

we get, rotating as usual the integration path in the ẑ plane,

Z[0] =
∫

DφiDzDẑ exp

[
N Re

∫
da ẑ(a)z(a) −

∑
i

Re
∫

da ẑ(a) eIφi (a)

+
∑

i

T (φi) − N� Re
∫

da(1 − z(a)k)

]

=
∫

DzDẑ exp N

[
Re
∫

da ẑ(a)z(a) − � Re
∫

da(1 − z(a)k) + logZ[ẑ]

]

=
∫

DzDẑ exp NL(z, ẑ) (B.10)

where we defined

Z[ẑ] =
∫

Dφ exp[T (φ) − Re
∫

da ẑ(a) eIφ(a)]. (B.11)

By comparison with equation (B.1) we see that Z[ẑ] is the generating functional for the
dynamics of a single degree of freedom with energy

H(φ, ẑ) = Re ẑ(a) eIφ. (B.12)

We can evaluate the integral in equation (B.10) by a saddle point, as usual in mean-field
models; we get, using again the formal operators (B.4)

δL

δz∗(a)
= ẑ(a) + �kz(a)k−1 = 0 �⇒ ζ̂ (a) = −�kζ(a)k−1

δL

δẑ∗(a)
= z(a) +

δ

δẑ∗(a)
logZ[ẑ] = 0 �⇒ ζ(a) = 〈eIφ(a)〉H(ζ̂ )

(B.13)

where we defined ζ and ζ̂ as the saddle point values of z and ẑ respectively. So, in the
thermodynamic limit the dynamics of the system is equivalent to that of a single degree of
freedom with Hamiltonian{

H(φ, a) = −� Re[kζ(a)k−1 eIφ]

ζ(a) = 〈eIφ(a)〉. (B.14)

Setting θ = θ̄ = 0, we get the effective dynamical system for the variable ϕ:{
H(ϕ, t) = −� Re[kζ(t)k−1 eIϕ]

ζ(t) = 〈eIϕ(t)〉. (B.15)
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B.3. Self-correlation functions

We want now to show that it is possible to use the effective Hamiltonian, equation (B.15), to
calculate the self-correlation function given by equation (B.6). In fact we obtain in the same
way as we obtained equation (B.10)

Z =
∫

DzDẑ exp

[
N Re

∫
da ẑ(a)z(a) − N� Re

∫
da(1 − z(a)k)

+ (N − 1) logZ[ẑ] + logZ[ẑ + h]

]

=
∫

DzDẑ exp[NL(z, ẑ) + logZ[ẑ + h] − logZ[ẑ]] (B.16)

so that

F(a, b) =
∫

DzDẑ
δ2 logZ[ẑ]

δẑ(a)δẑ∗(b)
exp[NL(z, ẑ)]. (B.17)

In the thermodynamic limit we know from the saddle point equations that the integral is
dominated by z = ζ, ẑ = ζ̂ , and that

exp NL(ζ, ζ̂ ) ∼ Z[0] ∼ 1 (B.18)

so that

F(a, b) =
[

δ2 logZ[ẑ]

δẑ(a)δẑ∗(b)

]
ẑ=ζ̂

= 〈eI (φ(a)−φ(b))〉H(ζ̂ ) − 〈eIφ(a)〉H(ζ̂ )〈e−Iφ(b)〉H(ζ̂ ) ≡ F(a, b).

(B.19)

The self-correlation function is then equal to that calculated for a single degree of freedom
using the effective Hamiltonian (B.15). The same argument is extended to n-times correlations
by differentiating n-times.

Appendix C. Collective dynamics

In this appendix, we will derive a general relation between the self-correlation functions and
the collective ones. The latter vanish in the thermodynamic limit, and are related to the
Gaussian corrections around the mean-field saddle point that we studied in appendix B.

C.1. Gaussian corrections to mean field

We want now to calculate the correlation function of the ‘magnetization’ (multiplied by N in
order to have a well-defined thermodynamic limit)

G(a, b) = N [〈z(a)z∗(b)〉 − 〈z(a)〉〈z∗(b)〉] (C.1)

by expanding L at second order around the saddle point; to do this, it is not possible to use the
operators (B.4). We have to separate the real and imaginary parts of z and ẑ. We get, calling
�zσ = [Re(z − ζ ), Im(z − ζ ), Re(ẑ − ζ̂ ), Im(ẑ − ζ̂ )] with σ = 1, 2, 3, 4,

L(z, ẑ) = L(ζ, ζ̂ ) +
1

2

[∑
σ,σ ′

∫
da db �zσ (a)

δ2L

δzσ (a)δzσ ′(b)
�zσ ′(b)

]
. (C.2)

Then, at second order around the saddle point,

P(�z) ∝ exp

[
−N

2

∑
σ,σ ′

∫
da db �zσ (a)Jσσ ′(a, b)�zσ ′(b)

]
(C.3)
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where the matrix J (a, b) is given by

J (a, b) = −




Re w(a)δ(a − b) −Im w(a)δ(a − b) δ(a − b) 0
−Im w(a)δ(a − b) −Re w(a)δ(a − b) 0 −δ(a − b)

δ(a − b) 0 Fc(a, b) 0
0 −δ(a − b) 0 Fs(a, b)


 (C.4)

where

Fc(a, b) = 〈cos(φ(a)) cos(φ(b))〉H(ζ̂ ) − 〈cos(φ(a))〉H(ζ̂ )〈cos(φ(b))〉H(ζ̂ )

〈cos(φ(a)) sin(φ(b))〉H(ζ̂ ) = 0
Fs(a, b) = 〈sin(φ(a)) sin(φ(b))〉H(ζ̂ ) − 〈sin(φ(a))〉H(ζ̂ )〈sin(φ(b))〉H(ζ̂ )

w(a) = k(k − 1)ζ(a)k−2

(C.5)

are calculated on the effective Hamiltonian (B.14). We have also

Jσσ ′(a, b) = Jσ ′σ (b, a). (C.6)

Then defining

Gσσ ′(a, b) = N〈�zσ (a)�zσ ′(b)〉 (C.7)

one has ∑
σ ′

∫
db Jσσ ′(a, b)Gσ ′σ ′′(b, c) = δσσ ′′δ(a − c). (C.8)

We are interested in calculating

G(a, b) = N [〈z(a)z∗(b)〉 − 〈z(a)〉〈z∗(b)〉] = N〈�z1(a)�z1(b)〉 + N〈�z2(a)�z2(b)〉
= G11(a, b) + G22(a, b). (C.9)

By writing explicitly some of equations (C.8) and making some substitutions one gets

G11(a, c) = Fc(a, c) +
∫

dbFc(a, b)[Re w(b)G11(b, c) − Im w(b)G21(b, c)]

G12(a, c) =
∫

dbFc(a, b)[Re w(b)G12(b, c) − Im w(b)G22(b, c)]

G21(a, c) = −
∫

dbFs(a, b)[Im w(b)G11(b, c) + Re w(b)G21(b, c)]

G22(a, c) = Fs(a, c) −
∫

dbFs(a, b)[Im w(b)G12(b, c) + Re w(b)G22(b, c)].

(C.10)

These equations give the collective correlation functions in terms of the self-correlations
evaluated on the effective Hamiltonian; but using equation (B.19) we can replace the effective
self-correlations with the original ones, and obtain a relation between self-correlation and
collective correlations of the original system.

C.2. Solution in the equilibrium case

Probability conservation and causality imply that [16, 17]

Gσσ ′(a, b) = Cσσ ′(t, t ′) + (θ̄ ′ − θ̄ )(θ ′Rσσ ′(t, t ′) + θR̄σσ ′(t, t ′))

Fc,s(a, b) = Cc,s(t, t
′) + (θ̄ ′ − θ̄ )(θ ′Rc,s(t, t

′) + θR̄c,s(t, t
′))

(C.11)

where

R̄(t, t ′) = R(t ′, t). (C.12)
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In the t → ∞ limit the system reaches equilibrium, so that the correlation functions depend
only on the time difference, the response functions are related to the correlations by the
fluctuation–dissipation theorem, and w does not depend on time and is equal to its equilibrium
value. From the solution of the thermodynamics we know that the equilibrium magnetization
does not depend on θ and θ̄ , so that

lim
t→∞ w(a) = w = k(k − 1)ζ(β)k−2 (C.13)

is independent on a and

lim
t,t ′→∞

Gσσ ′(a, b) = Cσσ ′(t − t ′) + (θ̄ ′ − θ̄ )(θ ′Rσσ ′(t − t ′) + θRσσ ′(t ′ − t)) (C.14)

where the limit is obtained at fixed t − t ′ = τ . If we suppose that the correlations decay
fast (exponentially) for τ → ∞, the values of tb in the integrals in equation (C.10) must
stay close to ta, tc. Then in the limit in which ta, tc go to infinity, tb also must go to infinity,
and w becomes a constant also with respect to the fermionic variables. Then we can rewrite
equations (C.10) as

G11 = Fc + Re wFc ⊗ G11 − Im wFc ⊗ G21

G12 = Re wFc ⊗ G12 − Im wFc ⊗ G22

G21 = −Im wFs ⊗ G11 − Re wFs ⊗ G21

G22 = Fs − Im wFs ⊗ G12 − Re wFs ⊗ G22

(C.15)

where

(G1 ⊗ G2)(a, c) =
∫

db G1(a, b)G2(b, c). (C.16)

If G1 and G2 are of the form (C.11), G1 ⊗ G2 has the same form [16, 17],

(G1 ⊗ G2)(a, c) = (C1 ⊗ R̄2 + R1 ⊗ C2)(t, t
′)

+ (θ̄ ′ − θ̄ )(θ ′(R1 ⊗ R2)(t, t
′) + θ(R̄2 ⊗ R̄1)(t, t

′)) (C.17)

where ⊗ is the time convolution product. Equating (for example) the θ ′θ̄ ′ component of
equation (C.15) and moving to the frequency domain, we finally get

R11(ω) = Rc(ω) + Re wRc(ω)R11(ω) − Im wRc(ω)R21(ω)

R12(ω) = Re wRc(ω)R12(ω) − Im wRc(ω)R22(ω)

R21(ω) = −Im wRs(ω)R11(ω) − Re wRs(ω)R21(ω)

R22(ω) = Rs(ω) − Im wRs(ω)R12(ω) − Re wRs(ω)R22(ω)

(C.18)

and

R11(ω) = Rc(ω)

1 − Re wRc(ω) + (Im w)2Rc(ω)Rs (ω)

1+Re wRs (ω)

R22(ω) = Rs(ω)

1 + Re wRs(ω) − (Im w)2Rc(ω)Rs (ω)

1−Re wRc(ω)

.

(C.19)

Using the fluctuation–dissipation theorem, one can transform this relation into a relation
between the correlation functions.
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C.3. Other simplifications

In our model one can always choose the magnetization such that Im w = 0. In this case one
has

R11(ω) = Rc(ω)

1 − wRc(ω)
R22(ω) = Rs(ω)

1 + wRs(ω)
. (C.20)

Moreover, we can assume that the self-correlation functions are exponentials, so that

Rc,s(ω) = βAc,s

1 − iωτc,s

. (C.21)

We get easily

R11(ω) = βZcAc

1 − iωZcτc

Zc = (1 − βwAc)
−1. (C.22)

The same relation holds for R22 with the substitution w → −w. From this relation,
using the fluctuation–dissipation theorem and moving back to the time domain, one gets
equations (39).

Appendix D. Effective dynamical system for the minimization of W

The calculation of the effective potential W used in equation (46) is carried out on the same
lines as that presented in appendix B.2. We start from the generating functional

Z[0] =
∫

Dφi exp

[
1

2

∑
i

∫
da φi(a)�(2)φi(a) −

∫
da W(φ)

]
(D.1)

where W(φ) is given by equation (43). Now we introduce δ-functions for the variables z(a)

and z2(a), and we get

Z[0] =
∫

DzDẑDz2Dẑ2 exp N

[
Re
∫

da(z(a)ẑ(a) + z2(a)ẑ2(a))

−
∫

da
W(z, z2)

N
+ logZ(ẑ, ẑ2)

]
(D.2)

where now

Z(ẑ, ẑ2) =
∫

Dφ exp

[
T (φ) − Re

∫
da(ẑ(a) eIφ(a) + ẑ2(a) e2Iφ(a))

]
. (D.3)

We find then

W(φ, a) = Re[ẑ(a) eIφ + ẑ2(a) e2Iφ]. (D.4)

The saddle point equations are

δL

δz∗(a)
= ẑ(a) − 1

N

δW

δz∗(a)
= 0 �⇒

ζ̂ (a) = �2k2(k − 1)[ζ ∗(a)(ζ(a)ζ ∗(a))k−2 − ζ2(a)ζ(a)2k−3]

δL

δẑ∗(a)
= z(a) +

δ

δẑ∗(a)
logZ[ẑ, ẑ2] = 0 �⇒ ζ(a) = 〈eIφ(a)〉W(ζ̂ ,ζ̂2)

δL

δz∗
2(a)

= ẑ2(a) − 1

N

δW

δz∗
2(a)

= 0 �⇒ ζ̂2(a) = −1

2
�2k2ζ(a)2k−2

δL

δẑ∗
2(a)

= z2(a) +
δ

δẑ∗
2(a)

logZ[ẑ, ẑ2] = 0 �⇒ ζ2(a) = 〈e2Iφ(a)〉W(ζ̂ ,ζ̂2)

(D.5)
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and finally we obtain


W(φ, a) = �2k2(k − 1) Re{[ζ ∗(a)(ζ(a)ζ ∗(a))k−2 − ζ2(a)ζ(a)2k−3] eIφ}
− 1

2�2k2 Re{ζ(a)2k−2 e2Iφ}
ζ(a) = 〈eIφ(a)〉
ζ2(a) = 〈e2Iφ(a)〉

(D.6)

that after setting θ = θ̄ = 0 reduces to equation (46). Note that an irrelevant constant term in
W has been neglected in this derivation.

Appendix E. Closest saddles to equilibrium configurations

In this section we will derive the result presented in section 7.4. We have to compute the
quantity

σ(T ; es, q) = 1

N

∫
dϕi

e−βH(ϕ)

Z(T )

× log
∫

dψi δ(H(ψ) − Nes)δ(∂iH(ψ)) det H(ψ)δ (q − q(ϕ,ψ)) (E.1)

where q(ϕ,ψ) = N−1∑
i cos(ϕi − ψi). To do that, we need to prove a general relation.

Suppose we want to calculate at the saddle point a quantity Q of the form

Q = 1

N

∫
dϕi

e−βH(ϕ)

Z(T )
log A(ϕ) = lim

n→0

1

Nn

[∫
dϕi

e−βH(ϕ)

Z(T )
An(ϕ) − 1

]

= lim
n→0

1

Nn
log
∫

dϕi

e−βH(ϕ)

Z(T )
An(ϕ) (E.2)

where we used the relations log x = limn→0
xn−1

n
and limn→0(f (n) − 1) = limn→0 log f (n)

if f (n) →n→0 1. Suppose also that the energy depends only on some collective parameter
as in mean-field models: H(ϕ) = Ne(z(ϕ)), where Nz(ϕ) = ∑

i z(ϕi) (in our model,
z(ϕi) = exp(Iϕi)). Then we have

Q = lim
n→0

1

Nn
log
∫

dz
e−βNe(z)

Z(T )

∫
dϕi δ(z − z(ϕ))An(ϕ)

= lim
n→0

1

Nn
log
∫

dz dẑ
e−βNe(z)

Z(T )

∫
dϕi exp

(
iẑ

(
Nz −

∑
i

z(ϕi)

))
An(ϕ)

= lim
n→0

1

Nn
log

1

Z(T )

∫
dz dẑ exp(−βN(e(z) − T s(n; z, iẑ))) (E.3)

where we defined

s(n; z, iẑ) = z iẑ +
1

N
log
∫

dϕi exp

(
−iẑ

∑
i

z(ϕi)

)
An(ϕ). (E.4)

Clearly s(0; z, iẑ) is the entropic contribution to the free energy as a function of z, ẑ that we
obtain in the calculation of the partition function Z(T ), so that

f (T ) = − 1

βN
log Z(T ) = min

z,ẑ
[e(z) − T s(0; z, iẑ)] = e(ζ ) − T s(0; ζ, ζ̂ ) = f (0; ζ, ζ̂ )

(E.5)
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where (ζ(T ), ζ̂ (T )) is the (T-dependent) thermodynamic minimum of the free energy (note
that at the saddle point iẑ = ζ̂ ). Then we have

Q = lim
n→0

1

Nn
log
∫

dz exp(−βN [f (n; z, iẑ) − f (0; ζ, ζ̂ )]). (E.6)

We can now expand z = ζ + nζ (1) + o(n2), iẑ = ζ̂ + nζ̂ (1) + o(n2) and

f (n; z, iẑ) − f (0; ζ, ζ̂ ) = ∂f

∂z
(0; ζ, ζ̂ )nζ (1) +

∂f

∂iẑ
(0; ζ, ζ̂ )nζ̂ (1) +

∂f

∂n
(0; ζ, ζ̂ )n + o(n2)

= ∂f

∂n
(0; ζ, ζ̂ )n + o(n2) (E.7)

because by definition of (ζ ,ζ̂ ) we have ∂f

∂z
(0; ζ, ζ̂ ) = 0,

∂f

∂iẑ (0; ζ, ζ̂ ) = 0. We then get the final
result:

Q = −β
∂f

∂n
(0; ζ, ζ̂ ) = ∂s

∂n
(0; ζ, ζ̂ ). (E.8)

We have then to calculate (neglecting the term ζζ̂ that vanishes on taking the derivative with
respect to n),

s(n; ζ̂ , es, q) = 1

N
log
∫

dϕi exp

(
−
∑

i

ζ̂ cos ϕi

)

×
n∏

a=1

∫
dψa

i δ(H(ψa) − Nes)δ(∂iH(ψa)) det H(ψa)δ(q − q(ϕ,ψa)) (E.9)

where from the thermodynamic calculation ζ̂ (T ) = −βkζ k−1 and ζ is given by equation (8).
Using a representation analogous to equation (A.5) we get

s(n; ζ̂ , es, q) = 1

N
log
∫

dϕi exp

(
−
∑

i

ζ̂ cos ϕi

)
n∏

a=1

∫
dβa

2π
eNβaes

×
∫

D�a
i exp

[∫
dθ̄ dθ(1 − βaθθ̄)H(�a)

]
δ

(
Nq −

∑
i

cos
(
ϕi − ψa

i

))
.

(E.10)

We will now (i) substitute the expression H(�a) = N
(
1 − Re yk

a

)
, using y instead of z to

avoid confusion with the thermodynamic variable ζ , (ii) insert some δ-functions for ya and
the corresponding integral representation with a multiplier ŷa , (iii) neglect all the product and
sum signs related to the index a, (iv) use the integral representation for the δ-function of q
with a multiplier λa . Then we get an expression that has to be maximized with respect to all
the parameters to get the saddle point value of s(n; ζ̂ , es, q):

s(n; ζ̂ , es, q) = max
allpar

[∑
a

βaes +
∑

a

∫
dθ̄ dθ

[
(1 − βaθθ̄)

(
1 − Re yk

a

)
+ Re yaŷa

]

+
∑

a

λaq + logS(ζ̂ , ŷa, λa)

]

S(ζ̂ , ŷa, λa)=
∫

dϕ D�a exp

[
−ζ̂ cos ϕ −

∑
a

∫
dθ̄ dθ Re ŷa eI�a −

∑
a

λa cos(ϕ −ψa)

]
.

(E.11)
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As usual, we will assume that (i) there is symmetry between the replicas (ya = y, etc), (ii) y

and ŷ are real, (iii) all the fermionic components are 0. Then we get

s(n; ζ̂ , es, q) = max
allpar

[
n
(
β
(
es − 1 + yk

0

)− kyk−1
0 y3 + ŷ0y3 + ŷ3y0 + λq

)
+ logS(ζ̂ , ŷ, λ)

]
S(ζ̂ , ŷ, λ) =

∫
dϕ e−ζ̂cos ϕ

[∫
D� exp

(
−
∫

dθ̄ dθ(ŷ0 + ŷ3θ θ̄) cos � − λ cos(ϕ − ψ)

)]n

.

Now we have to take the derivative of s with respect to n at n = 0. By direct computation

σ(ζ̂ ; es, q) = max
allpar

∂s

∂n
(0; ζ̂ , es, q) = max

allpar

[
β
(
es − 1 + yk

0

)− y3
(
kyk−1

0 − ŷ0
)

+ ŷ3y0 + λq

+
∫

dϕ
e−ζ̂cos ϕ

2πI0(ζ̂ )
log
∫

D� exp

(
−
∫

dθ̄ dθ(ŷ0 + ŷ3θ θ̄) cos �

− λ cos(ϕ − ψ)

)]
. (E.12)

The interpretation of this expression is straightforward by comparison with equation (A.14):
in fact if we put λ = 0 we get exactly equation (A.14). This corresponds to integrating σ over
q, so the dependence on the reference configuration (and hence on the temperature) disappears
and we get the number of saddles of energy es . When λ is different from 0 the last term of the
previous expression represents the single-particle version of σ . Now we can proceed exactly
in the same way as we proceeded after equation (A.14): we take the derivatives with respect
to β and y3. This fixes y0 = (1 − es)

1/k and ŷ0 = kyk−1
0 and makes the first two terms of σ

equal to zero. As we are looking for saddles of energy es < 1, we then have ŷ0 > 0, and the
dependence on ŷ0 in the last term disappears. We get

σ(ζ̂ ; es, q) = max
λ,ŷ3

[
ŷ3y0 + λq +

∫
dϕ P(ϕ) log(−2 sinh(ŷ3 + λ cos ϕ))

]
(E.13)

where P(ϕ) is given by equation (47). From the equation y0 = (1 − es)
1/k we see that y0 is

the average of cos ϕ on the saddles; then we will change the notation calling y0 = ζs . Taking
the derivatives of σ with respect to λ and ŷ3 we get

ζs = −
∫

dϕ P(ϕ)[tanh u(ϕ)]−1 q = −
∫

dϕ P(ϕ) cos ϕ[tanh u(ϕ)]−1 (E.14)

where u(ϕ) = ŷ3 + λ cos ϕ. Now if we want ζs ∈ [0, 1], u(ϕ) must have an imaginary part;
but if we want ζs to be real, this imaginary part must be constant and equal to π/2. We
will then assume that ŷ3 = y + iπ

2 ; note that this is the correct solution for λ = 0 (see
equation (A.17)). We obtain easily the parametric relation for σ(T ; ζs, q),

ζs(y, λ) = −
∫

dϕ P(ϕ)f (t (ϕ))

q(y, λ) = −
∫

dϕ P(ϕ) cos ϕf (t (ϕ))

σ (y, λ) =
∫

dϕ P(ϕ)[log 2 cosh t (ϕ) − t (ϕ)f (t (ϕ))] − iπ
1 − ζs(y, λ)

2

(E.15)

where t (ϕ) = y + λ cos ϕ and f (t) = cosh t−1
sinh t

. We see that the imaginary part of σ is,
as expected, equal to iπn(es), remembering the relation between energy and order of each
stationary point. In the following we will neglect the imaginary part of σ . Now we have to
maximize q on the curve σ = 0 (see section 7.4). To do that, we start with a simple argument:
as λ is the field conjugated to q (the relation between λ and q is the same as the relation between
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–1
1

ζ

−ζ

_
q

ζ

−ζ
_

_

_
–q

Figure 14. Schematic diagram of the constant y paths in the (q, ζs) plane. σ(q, ζs) is equal to 0
on the border of the domain, and is greater than 0 inside the domain. The black dots are the point
for which q is maximum in the σ > 0 domain.

magnetization and magnetic field in a ferromagnet) we expect that the maximum overlap will
be obtained in the |λ| → ∞ limit. In fact, for λ → ±∞, we have t (ϕ) → ±sgn(cos ϕ)∞
and f (t (ϕ)) → ±sgn(cos ϕ), so that

lim
λ→±∞

q(y, λ) = ∓
∫

dϕ P(ϕ)|cos ϕ|. (E.16)

As we want q to be positive, we have to choose λ → −∞. We have then

lim
λ→−∞

q(y, λ) =
∫

dϕ P(ϕ)|cos ϕ| = q̄

lim
λ→−∞

ζ(y, λ) =
∫

dϕ P(ϕ) sgn(cos ϕ) = ζ̄s

lim
λ→−∞

σ(y, λ) = 0.

(E.17)

Then we have a consistency check of our assumption, that the point reached in the limit
λ → −∞ belongs to the curve σ = 0.

A more accurate argument can be given in this way: one can look numerically at the curve
q(ζs), parametrically in λ at fixed y. The curve looks like the one given in figure 14, and as λ

moves from −∞ to ∞ the point in the (ζs, q) plane moves from (ζ̄s , q̄) to (−ζ̄s ,−q̄) (black
dots in figure 14) as predicted by equation (E.17). Now it is easy to show that

lim
y→±∞ q(y, λ) = ∓ζ lim

y→±∞ ζs(y, λ) = ∓1 lim
y→±∞ σ(y, λ) = 0. (E.18)

Then for |y| → ∞ and λ fixed all the curves collapse on the white dots in figure 14. But it is
also easy to show that for y → ∞ and λ = −y(1 + δ) → −∞ the point goes on the upper
border of the domain given in figure 14, and moves from the left white dot to the upper black
dot as δ moves from 0 to ∞ (the other branch, from the left white dot to the lower black dot,
is obtained for δ going from −2 to −∞). On the whole border of the domain we have σ = 0
from equation (E.18); then (ζ̄s , q̄) is exactly the point at which q is maximum on the curve
σ = 0.



8600 F Zamponi et al

References

[1] Angell C A 1995 Science 267 1924
[2] Sastry S, Debenedetti P G and Stillinger F H 1998 Nature 393 554
[3] Sastry S 2001 Nature 409 164
[4] Keyes T and Chowdhary J 2002 Phys. Rev. E 65 041106
[5] Debenedetti P G and Stillinger F H 2001 Nature 410 259
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